PORTFÓLIO DE SERVIÇO					
CÓDIGO	LEPREG03				
LABORATÓRIO	LEPR - LABORATÓRIO DE ENSAIOS DE PROPULSÃO				
DIVISÃO	APR – DIVISÃO DE PROPULSÃO				
SUBDIRETORIA	SDEG – SUBDIRETORIA DE ENGENHARIA				
DESCRIÇÃO	BANCO DE TESTE DE BOMBAS HIDRÁULICAS				

Descrição do Serviço Técnico Especializado (STE)

O Banco de Teste de Bombas Hidráulicas (BTBH) foi projetado para realizar ensaios de eficiência bombas e turbinas durante as fases de desenvolvimento, pela imposição e controle de rotação para o ensaio de bombas ou pela absorção e mensuração de parâmetros de desempenho no caso das turbinas. Em ambos os casos, este banco dedica-se ao desenvolvimento e avaliação desses componentes operando com água como fluido modelo e nitrogênio líquido como fluido criogênico para ensaio.

O LEPR/BTBH está habilitado a:

- I Elaborar especificações de facilidades e métodos de ensaios relacionados desenvolvimento de bombas e turbinas que compõe um sistema propulsivo de um motor foguete a propelente líquido;
- II Supervisionar, executar e apoiar atividades de pesquisa, integração, preparação e ensaios;
- III Realizar estudos experimentais em mecânica dos fluidos, análise de vibração e CFD relacionados ao desenvolvimento, teste e validação de bombas hidráulicas e turbinas aplicáveis aos sistemas de pressurização e alimentação de motores-foguete a propelente líquido e híbrido.

Introdução ao Banco de Teste de Bombas Hidráulicas

Figura 1 – Setup de teste de Bomba de Combustível

O Banco de Teste de Bombas Hidráulicas (figura 1) foi projetado no contexto do desenvolvimento do Motor Foguete a Propelente Líquido (MFPL) L75 para realizar o ensaio das

bombas do par propelente etanol e LOx, bem como da turbina responsável pelo acionamento das mesmas perfazendo o ciclo de desenvolvimento do conjunto turbobomba do motor L75.

Em razão de sua arquitetura e lista de componentes, o BTBH é capaz de medir parâmetros de escoamento de água dentro do envelope de operação da bomba definido em documento de Especificação de Ensaio. Dessa forma, o procedimento garante que os ensaios sejam realizados dentro das condições previstas para aquela configuração e integração particulares.

No caso específico das bombas hidráulicas, para obtenção dos parâmetros de desempenho e cavitação, utiliza-se água como fluido modelo de ensaio pressupondo a aplicação de regras de similaridade para estudo com outros fluidos.

Características e Aplicações:

O sistema possui circuito de alimentação de água para ensaio de bombas com controle proporcional de vazão e regulagem de pressão de recalque e sucção. Ainda, um sistema de pressurização de ar comprimido e vácuo permite explorar a pressão de entrada do dispositivo ensaiado, variando diferentes pontos do envelope até o limite da cavitação.

Seu sistema de acionamento elétrico e caixa multiplicadora de velocidades é responsável por gerar a força motriz que possibilita ensaiar o conjunto rotativo até 30.000 rpm com medição instantânea de torque, rotação e potência. Esse sistema é composto por um inversor de frequência do tipo regenerativo, motor elétrico de 550kW, caixa multiplicadora de velocidades (rotação máxima: 33.000 rpm) e torquímetro.

O banco é controlado por um sistema PXI da NI (National Instruments) configurado pelo software proprietário NI VeriStand versão 2016. Esse ambiente de desenvolvimento permite o controle e monitoramento dos parâmetros de ensaio bem como a aquisição e o tratamento dos sinais conectados ao corpo ensaiado. A instrumentação de teste composta por sensores de pressão, temperatura e vazão é flexível e customizável conforme a necessidade da Solicitação de Ensaio (SE).

Sequência ordenada de atividades e tarefas para a prestação do STE

A sequência ordenada de atividades e tarefas da ICT/IAE que serão realizadas para a prestação do serviço técnico especializado na área de ensaio de bombas hidráulicas e turbinas é descrita a seguir:

- Etapa 1: Inicialmente, reunião técnica busca apresentar as condições de operação do BTBH que devem nortear a elaboração de documento de Solicitação de Ensaio (SE). Nesta etapa são estabelecidos os requisitos funcionais, operacionais, mecânicos, de interface e de garantia do produto para o emprego do banco nos ensaios de eficiência e cavitação.
- **Etapa 2**: Análise e validação da SE junto ao interessado com definição do cronograma físico-financeiro do STE e de ações decorrentes para viabilizar a execução da SE.
- Etapa 3: Fornecimento da bomba ou turbina a ser ensaiada para limpeza e preparação para integração no banco de ensaio juntamente com desenhos de engenharia para escolha de interfaces mecânicas.
- Etapa 4: Execução da SE no BTBH.
- Etapa 5: Desmontagem, limpeza e devolução dos componentes.

- **Etapa 6**: Elaboração de Relatório de Ensaio e disponibilização dos dados brutos dos testes por parte do LEPR em favor do interessado.
- Etapa 7: Atendimento em caso de garantia da qualidade por parte da ICT/IAE do serviço prestado.

Pessoal envolvido para realização do STE

O pessoal da ICT necessário para a prestação da STE é o efetivo do Laboratório de Ensaios de Propulsão (LEPR), da Divisão de Propulsão da ICT/IAE. De acordo com o Regimento Interno do Instituto de Aeronáutica e Espaço, cabe ao LEPR a realização de testes relacionados a pesquisa e desenvolvimento em propulsão espacial. Neste contexto ficam cobertas as atividades/competências de Gestão, Planejamento e Logística; Montagem e Integração; Instrumentação e Controle; Aquisição e Tratamento de Dados; Operação do banco e Segurança Operacional;

Serviço técnico especializado	RH
Gestão, Planejamento e Logística	Chefe, Adjunto e Encarregado Técnico do LEPR
Montagem e Integração	Encarregado Técnico, 01 Engenheiro e 03 Técnicos
Instrumentação, Controle, Aquisição e Tratamento de Dados	Encarregado Técnico, 01 Engenheiro e 02 Técnicos
Operação do banco	Encarregado Técnico, 01 Engenheiro e 05 Técnicos
Segurança Operacional	Encarregado Técnico e 01 Engenheiro

O efetivo do LEPR opera com 04 (quatro) engenheiros efetivos, 05 (cinco) engenheiros colaboradores, 03 (três) técnicos efetivos e 01 (um) técnico colaborador.

Tabela 2 – Número de servidores de nível superior e nível técnico envolvidos nas etapas de 1 a 7.

Etapa 1	01 Servidor de Nível Superior e 03 Técnicos			
Etapa 2	01 Servidor de Nível Superior e 03 Técnicos			
Etapa 3	01 Servidor de Nível Superior e 05 Técnicos			
Etapa 4	01 Servidor de Nível Superior e 03 Técnicos			
Etapa 5	01 Servidor de Nível Superior e 05 Técnicos			
Etapa 6	01 Servidor de Nível Superior e 01 Técnico			
Etapa 7	01 Servidor de Nível Superior e 01 Técnico			

Insumos, equipamentos e laboratórios utilizados para a realização do STE

Todos os insumos para a realização do STE são de responsabilidade do interessado. Os ensaios solicitados podem incorrer em riscos para o BTBH considerando a possibilidade de altas rotações, até 33.000 RPM, associadas a potencias elevadas, de até 550kW, obrigando a contratação de seguro por parte do interessado.

Observações complementares:

- Não é possível definir um cronograma físico e financeiro antes de concluída a Etapa 2.
- O Relatório de Ensaio emitido pelo LEPR trata da apresentação dos resultados obtidos com avaliação qualitativa dos dados de ensaio.
- A contratação de análise no contexto da P&D do interessado deve ser alvo de Etapa complementar assim como eventuais certificações e garantias dos resultados obtidos do STE.

Formação dos custos unitários/globais do STE

Para o dimensionamento dos custos, o setor administrativo da ICT/IAE será responsável por estabelecer o custo da Hora Laboratório (HL) e do Homem Hora (HH) referentes ao STE. Para a HL, tem-se como composição as horas em energia, do custo de manutenção de operacionalidade do BEH e do custo de obsolescência do equipamento diluído em horas utilizadas pelo STE. Para o HH, estabelecem-se os valores referentes aos custos de serviços de funcionários de Nível Superior e Nível Médio. A tabela a seguir exibe a composição de custos com base nos valores de HL e HH supracitados, tomando por exemplo um cronograma físico de 30 horas por semana e uma (01) semana por etapa.

Tabela 3 – Composição de custos H/H.

Atividade	Quantidade	Qualificação	Carga Horária	Valor por Hora	Valor Total
	1	Nível Superior	30	R\$ 189,81	R\$ 5.694,30
Etapa 1	3	Nível Técnico	30	R\$ 109,24	R\$ 9.831,60
	1	Nível Superior	30	R\$ 189,81	R\$ 5.694,30
Etapa 2	3	Nível Técnico	30	R\$ 109,24	R\$ 9.831,60
	1	Nível Superior	30	R\$ 189,81	R\$ 5.694,30
Etapa 3	5	Nível Técnico	30	R\$ 109,24	R\$ 16.386,00
	1	Nível Superior	30	R\$ 189,81	R\$ 5.694,30
Etapa 4	3	Nível Técnico	30	R\$ 109,24	R\$ 9.831,60
	1	Nível Superior	30	R\$ 189,81	R\$ 5.694,30
Etapa 5	5	Nível Técnico	30	R\$ 109,24	R\$ 16.386,00
	1	Nível Superior	30	R\$ 189,81	R\$ 5.694,30
Etapa 6	1	Nível Técnico	30	R\$ 109,24	R\$ 3.277,20
	1	Nível Superior	30	R\$ 189,81	R\$ 5.694,30
Etapa 7	1	Nível Técnico	30	R\$ 109,24	R\$ 3.277,20
TOTAL		R\$ 99.709,80			

Depreciação das Instalações

A estimativa de um valor de depreciação de bancos dedicados a ensaios em propulsão espacial é complexa. Considerou-se 30hs referentes a Etapa 4. Segue estimativa de referência:

Tabela 4 – Depreciação das Instalações

Instalação	Id Prédio	Valor estimado das instalações	Tempo Estimado Vida Útil (anos)	Tempo de uso para a atividade (horas)	Horas Estimadas de Vida Útil	Depreciação Estimada por Hora de Uso	Valor Depreciado durante o tempo de uso em R\$
LEPR	E-162	R\$ 20.000.000,00	50	30	60280	R\$ 45,66	R\$ 9.953,55

Consumo Energético e Depreciação dos Equipamentos

Depreciação dos Equipamentos e Consumo enérgico conforme tabela 5 a seguir:

Tabela 5 – Depreciação dos Equipamentos e Consumo enérgico

ETAPA	Equipamento	Valor	Potência do Equipamento (em Watts)		Tempo Estimado Vida Util – em anos	Custo de Manutenção por hora de uso em R\$	Tempo de Uso PARA A ATIVIDADE (horas)	Consumo em kWh Durante o tempo de utilização	Custo de Energia (R\$0,78 por kWh)	Horas Estimadas de Vida Útil	Depreciação Estimada por Hora de Uso	Valor Depreciado durante o tempo de uso em R\$	Custo de Manutenção durante o tempo de uso em R\$
4	втвн	R\$ 20M	550k	60,00	50	R\$ 0,00	1,00	550,00	R\$ 429,00	60280	R\$ 331,79	R\$ 331,79	R\$ 0,00
				•	•				R\$ 429,00			R\$ 331,79	R\$ 0,00
											SUBTOTA	AL.	R\$ 760,79

Composição final do STE

Tabela 6 – Composição final do STE

CALCULO DO VALOR FINAL DO SERVIÇO						
Mão de Obra Dedicada R\$ 99.709,80						
Consumo Energético e Depreciação dos Equipamentos	R\$ 760,79					
Depreciação de Instalações	R\$ 9.953,55					
Material de Consumo/Insumos	R\$ 0,00					
TOTAL	R\$ 110.424,14					

Informações que a contratante deve apresentar para apreciação do grau de inovação do STE

De acordo com o estabelecido na Política de Inovação da ICT/IAE, a contratante deve apresentar mediante Carta ao Instituto um compêndio de informações acerca da necessidade de realização de STE e que estejam enquadrados nos objetivos da Lei de Inovação de nº 10.973/04, mais especificamente os artigos 4º, 6º, 8º, 9º e 22º, e devidamente verificados pelo Chefe da VDIR-GI/IAE. Um encaminhamento formal será enviado para a Coordenadoria de Gestão da Inovação (DCTA-CGI), para enfim serem aprovados pelo Diretor da ICT/IAE.