

Relatório Final

Título do projeto de pesquisa: Preparação de amostras metalográficas, interpretação

de microestruturas.

Bolsista: André Martins da Silva

Orientador (a): Christian F. A. Von Dollinger

Período a que se refere o relatório: Novembro de 2015 a junho de 2016

Resumo

A microestrutura dos materiais está diretamente relacionada com as propriedades físicas e mecânicas dos mesmos, ambas dependem e são afetadas pelos modos de processamento pelos quais passaram os materiais. O conhecimento e correta interpretação da microestrutura dos materiais é de grande utilidade no estudo de processos e desenvolvimento de novos produtos. No relatório parcial foi apresentado o processo de preparação metalográfica e analise microestrutural de uma seção de pá de hélice (liga de alumínio) e outra seção de aço inox. Neste relatório final será abordado o método de preparação e análise de um rebite de aplicação aeronáutica. Nesta análise determinou-se que o material do rebite é uma liga de alumínio 2117 solubilizada e envelhecida naturalmente.

1. Introdução

O ensaio metalográfico consiste no exame do aspecto de uma superfície plana seccionada de uma peça ou amostra metálica, devidamente polida e atacada por um reagente adequado. Por seu intermédio tem-se uma idéia de conjunto, referente à homogeneidade do material, à distribuição e natureza de fases, impurezas e características relacionadas ao processo de fabricação (ex orientação de grãos) [1]

Para a realização da análise, o plano de interesse da amostra é cortado, lixado, polido e atacado com reagente químico específico, de modo a revelar as interfaces entre os diferentes constituintes que compõe o material.

Quanto ao tipo de observação, está subdividida, basicamente em duas classes: Microscopia, análise feita em um microscópio com aumentos que normalmente são 50X, 100X, 200X, 500X, 1000X no microscópio óptico e até acima de 20000X nos microscópios eletrônicos de varredura (MEV), permitindo a análise da microestrutura ali presente. Macroscopia, análise feita a olho nu, lupa ou com utilização de microscópios estéreoscópicos (que favorecem a profundidade de foco e dão, portanto, visão tridimensional da área observada) com aumentos que podem variar de 5x a 100X.

O exame micrográfico consiste apenas em observar a microestrutura, determinando-se quais são os microconstituintes ou fases que as compõe. Os microconstituintes variam de acordo com o tipo de liga analisada e de acordo com os tratamentos térmicos, tratamentos mecânicos, processos de fabricação e outros processos a que o material tenha sido submetido [2].

2. Materiais e métodos

Ao longo dos sete meses de IC foram analisados alguns matérias como:

Alheta de resfriamento do cabeçote de um motor aeronáutico (alumínio fundido)

Pá de Hélice de motor aeronáutico (Alumínio)

Aço inoxidável CA6NM

Devido ao espaço disponível e a semelhança das técnicas empregadas, será apresentada detalhadamente a analise de um rebite aeronáutico.

Foi recebida uma seção da longarina de uma aeronave agrícola modelo IPANEMA para analise do rebite de fixação, para preparação metalográfica e caracterização da microestrutura (Figura - 1).



Figura 1 - seção da longarina (material recebido).

A partir dos material recebido foi escolhida uma seção onde estava presente um rebite. A amostra foi embutida a quente com baquelite convencional (resina fenólica) na embutidora da marca Teclago modelo EM30D (Figura 2).

Figura 2 - Embutidora utilizada na preparação metalográfica.

Após a amostra já embutida, esta foi submetida ao processo de lixamento no qual foram utilizadas as lixas de granulometria 180, 240, 400, 600 e 1200 mesh (abrasivos/pol²) na lixadeira a água da marca struers modelo Knuth Rotor 2 (Figura 3 a). Entre cada etapa de lixamento a amostra foi lavada em agua corrente para completa eliminação de resíduos de abrasivos.

Após a amostra devidamente lixada, a mesma foi submetida a um processo de polimento, a fim de eliminar quaisquer riscos deixados pelo lixamento, este foi subdividido em duas etapas: a primeira usando um abrasivo de diamante com granulometria 1 µm e a segunda etapa foi utilizado sílica coloidal 0,05 µm como abrasivo para acabamento, a politriz utilizada foi da marca Pantec modelo Polipan-2 (Figura 3b).

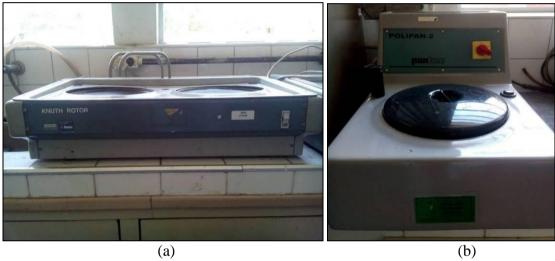


Figura 3 - (a) Lixadeira utilizada na preparação das amostras; (b) politriz utilizada na preparação das amostras.

Já polida, a fim de revelar a microestrutura da amostra, esta foi submetida a ataque químico com o reagente Keller, constituído por 95ml de água, 2,5 ml de ácido nítrico 1,5 ml de ácido clorídrico 1 ml de ácido fluorídrico.

As imagens para análise microestrutural foram obtidas utilizando-se um microscópio óptico da marca Zeiss (Figura 5) com aumentos nominais de 100x, 200x e 500x.

Figura 5 - microscópio Zeiss utilizado para análise microestrutural.

Foi medida a microdureza Vickers nas regiões da cabeça, corpo (espiga) e cabeça encruada, utilizando-se um microdurômetro futuretech com carga de 300 gf, o ensaio de microdureza vickers consiste em aplicar uma carga conhecida utilizando um sistema cuja a ponta é constituída por um penetrador de diamante com ângulo 136° entre as faces conforme mostrado na (figura 6) após a penetração as diagonais são medidas por um sistema óptico acoplado e a microdureza vickers calculada a partir da equação

HV =
$$\frac{0,102 \cdot p \cdot sem(O/2)}{d^2} = 0,189 \cdot \frac{p}{d^2}$$

Equação 1 equação da microdureza vickers.

Onde p = carga (N) $d = comprimento da diagonal da impressão (mm) s <math>\Theta = 136^{\circ}$.

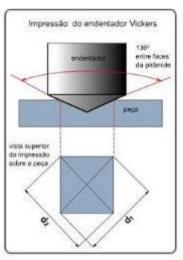


Figura 6 - microdurômetro semelhante ao utilizado.

Um exemplo de impressão com as respectivas medidas é apresentado na (figura 7).

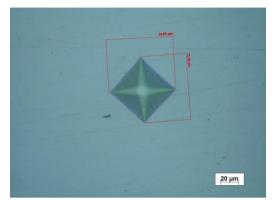


Figura 7 - impressão do microdurometro.

3. Resultados e discussões.

3.1 Análise visual.

De acordo com o analise visual, observou-se na cabeça do rebite, uma estampa em baixo relevo como mostra a (figura 8).

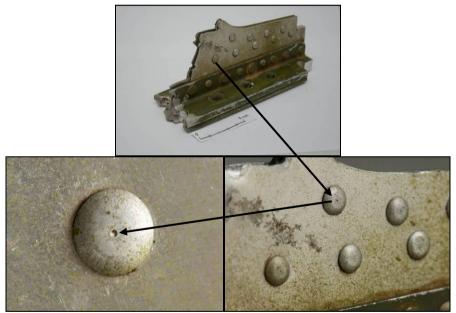


Figura 8 - estampa em baixo relevo na cabeça do rebite.

O rebite é um tipo de elemento de fixação permanente, ou seja, uma vez instalado não pode ser removido a não ser que este seja inutilizado. Ele é basicamente um pino metálico com o corpo ou espiga de determinado comprimento, cuja cabeça possui formas padrões e é concebida do processo de fabricação do rebite. A (figura 9 A e B) a seguir apresenta as partes que compõe os rebites e os vários formatos de cabeça, respectivamente:

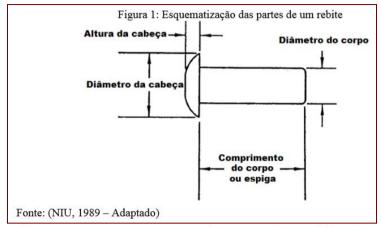


Figura - 9A - partes que compõem um rebite - Fonte: (NIU, 1989 - Adaptado).

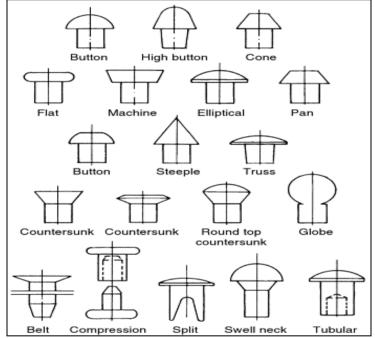


Figura 9B – formatos de cabeça - Fonte: (MESSLER, 2004).

A fabricação de rebites é padronizada, ou seja, segue normas técnicas que indicam medidas da cabeça, do corpo e do comprimento útil dos mesmos. A cabeça é a parte mais larga localizada na extremidade do rebite, dimensionalmente maior que o diâmetro nominal do corpo do fixador. É a partir do emprego que se define o formato da cabeça que se deve utilizar, conforme a (figura -10) a seguir:

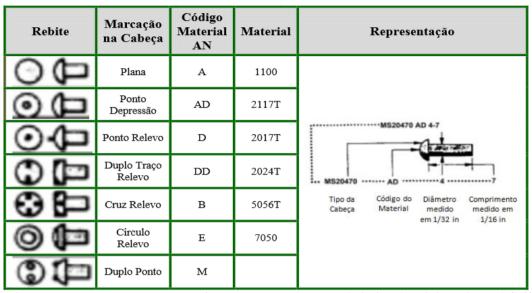


Figura 10 – Formatos de cabeça e suas aplicações -Fonte: (Federal Aviation Administration – AC 43.13-1B, 1998 – Adaptado).

Pela análise visual e consulta à FEDERAL AVIATION ADMINISTRATION - AC43.13-1B constatou-se que a estampa na cabeça do rebite é tecnicamente denominada "Ponto Depressão" e é o que determina o tipo de material e sua aplicação, com essas informações podemos afirmar que o rebite em questão é o AD – Liga de Alumínio, 2117-T3. [4]

3.2 Análises microscópicas.

Utilizando um microscópio Óptico, observou-se uma região com os grãos deformados mecanicamente como mostra a (figura 11).

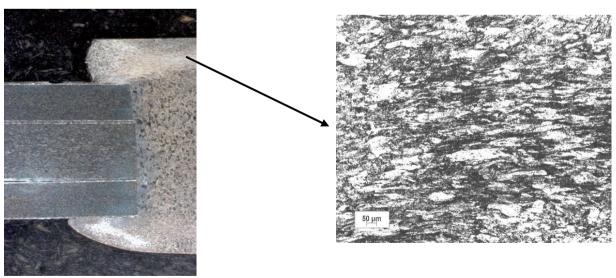


Figura 11 - Extremidade do rebite onde observou-se encruamento dos grãos.

O encruamento dos grãos ocorre por deformação mecânica a frio, a rebitadeira tem duas partes, uma que apóia um dos lados do rebite enquanto que o outro é martelado para sua conformação, é esse "martelamento" que causou o encruamento dos grãos.

Observa-se característica de microestrutura do alumínio solubilizado e envelhecido artificialmente (T3) e grãos alongados na espiga como ilustra a (Figura 12).

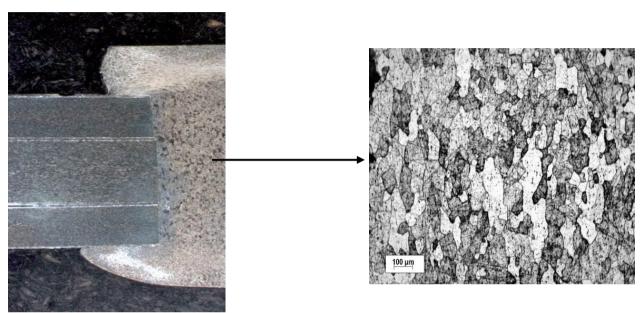


Figura 12 - Grãos alongados no corpo ou espiga.

Observam-se grãos menores na cabeça do rebite como mostra a (figura 13).

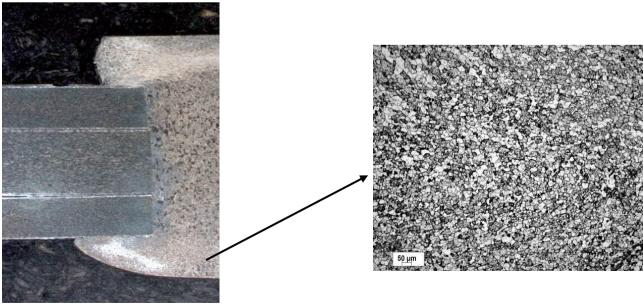


Figura 13 - grãos menores na cabeça do rebite

A diminuição dos grãos na cabeça do rebite é proveniente da conformação e recristalização no processo de fabricação.

Foi medida a microdureza Vikers nas regiões da cabeça, corpo (espiga) e cabeça encruada, utilizando-se um microdurômetro futuretech com carga de 300 gf, os resultados estão apresentados na tabela abaixo.

Tabela 1 - valores obtidos da microdureza (HV)

eça	Corpo	Cabeça encruada
70	193	251
39	181	289
77	179	299
76	196	283
55	180	289
173,4	185,8	282,2
12,4	8,0	18,4
	70 339 77 76 55	70 193 39 181 77 179 76 196 55 180 173,4 185,8

4. Conclusões

Os objetivos propostos no projeto, dominar técnicas de preparação de amostras e análise metalográfica foram concluídos com sucesso. Foi possível aprimorar técnicas de preparação de amostras tais como lixamento, polimento e ataque químico e também interpretação das microestruturas observadas.

5. Próximas atividades

Dentro do escopo do presente projeto pretende-se a analise de diferentes componentes aeronáuticos fabricados com diferentes materiais. Está em curso a análise de uma fratura dúctil de uma liga de alumínio e a fratura de uma alheta de resfriamento de motor aeronáutico em alumínio fundido. A fim de incrementar o trabalho e possibilitar ao bolsista um maior aprendizado à medida que forem surgindo casos de análise de falhas será feita a análise metalográfica e da superfície de fratura desses componentes. Também nessa etapa será iniciado o treinamento em análise de imagens para a quantificação de fases em materiais. Para tanto será pedida a renovação da bolsa de pesquisa.

Referencias Bibliográficas

- [1] André Luís de Brito BAPTISTA, A.L.B, SOARES, A.R, NASCIMENTO, I.A. O ensaio metalográfico no controle de qualidade. Disponível em :
- http://www.spectru.com.br/ensaio_metal.pdf. Consultado em 11/02/2015
- [2] COLPAERT, H., SILVA, A. L.V Metalografia dos Produtos Siderúrgicos Comuns 4ª Edição Revista e Atualizada , ISBN 9-788-521-204-497
- [3] ASM Handbook Volume 9: Metallography and Microstructures. Materials Park, ASM International, 1995
- [4] http://www.faa.gov/ consultado em 28/06/2016