Relatório Parcial

Título do projeto de pesquisa: Medidas de vento no Centro de Lançamento de Alcântara

Bolsista: Lucas Martins de Oliveira

Orientador(a): Gilberto Fisch

Período a que se refere o relatório: Abril a junho 2015

Resumo

O projeto foi analisar dados de vento provenientes do Centro de Lançamento de Alcântara e comparalos usando tabelas, gráficos e correlações. Foram medidos a velocidade e direção do vento até 200 m por um instrumento denominado de miniSODAR e até 70 m por uma Torre Anemométrica.

Introdução

Os dados obtidos foram durante o período de 00:00:00 até 01:30:00 do dia 01/04/2012 e foram medidos de 10 a 200 metros de altura. Os mesmos dados foram coletados pelo miniSODAR junto da torre anemométrica de Alcântara.

O Centro de Lançamento de é uma base de lançamento de satélites da Agência Espacial Brasileira, na cidade de Alcântara, localizada na costa atlântica do norte do Brasil, no estado do Maranhão. É operado pela Força Aérea Brasileira. O Centro de Lançamento de Alcântara é a base de lançamento mais próximo do equador. Isto dá ao local de lançamento de uma vantagem significativa no lançamento de satélites geoestacionários, um atributo compartilhado pelo Centro Espacial da Guiana. Os objetivos era analisar e intender os dados.

Material e Métodos

Um dos materiais utilizados foi o miniSODAR, o SODAR é um instrumento meteorológico usado para obter um do vento para medir o espalhamento das ondas sonoras pela turbulência atmosférica. Sistemas SODAR são utilizados para medir a velocidade do vento a diferentes alturas acima do solo , e a estrutura termodinâmica da camada mais baixa da atmosfera. Sistemas sodar são como radar (detecção de rádio e variando) e sistemas LIDAR (radar de luz) , exceto que as ondas sonoras em vez de ondas de rádio ou de luz são utilizados para a detecção. Outros nomes usados para os sistemas sodar incluem Sonda, da sonda e radar acústico.

Resultados preliminares

Metros de altura			10	15	20	25	30	35	40	45	50	55
Velocidade do MINI	SODAR											
Day of Year	aa/mm/d	hh:mm:ss										
91.0069444444444	12/04/01	00:10:00	3.62	2.97	3.09	2.85	2.94	4	3.94	3.75	4.32	4.85
91.013888888889	12/04/01	00:20:00	3.4	3.27	3.35	3.12	3.32	3.76	3.79	3.97	4.42	5.5
91.0208333333333	12/04/01	00:30:00	3.89	3.18	3.34	3.09	3.26	3.75	3.53	3.53	4.12	4.66
91.027777777778	12/04/01	00:40:00	3.29	3.4	3.27	2.81	3	3.61	3.43	3.39	3.88	4.08
91.034722222222	12/04/01	00:50:00	3.38	2.88	2.93	2.67	2.87	3.44	3.51	3.66	4.24	4.69
91.0416666666667	12/04/01	01:00:00	3.84	3.31	3.45	3.32	3.43	4.26	4.41	4.5	5.1	5.82
91.0486111111111	12/04/01	01:10:00	3.51	3.22	3.35	2.82	2.95	3.7	3.51	3.32	4.14	4.82
91.055555555556	12/04/01	01:20:00	99.99	3.32	3.35	2.84	2.92	3.66	3.69	3.52	4.01	5.16
91.0625	12/04/01	01:30:00	3.53	3.63	3.48	3.27	3.58	4.33	3.84	3.49	4.23	6.02
Metros de altura			10	15	20	25	30	35	40	45	50	55
Direção do MINISOD	AR											
Day of Year	aa/mm/d	hh:mm:ss										
91.006944444444	12/04/01	00:10:00	20	16	21	29	36	42	46	50	49	49
91.013888888889	12/04/01	00:20:00	5	15	20	27	31	38	46	44	46	45
91.0208333333333	12/04/01	00:30:00	29	18	22	29	29	37	38	37	33	35
91.027777777778	12/04/01	00:40:00	13	12	19	22	23	37	34	39	35	34
91.034722222222	12/04/01	00:50:00	22	18	28	29	29	33	41	45	46	42
91.0416666666667	12/04/01	01:00:00	19	17	23	27	32	39	42	44	45	43
91.0486111111111	12/04/01	01:10:00	8	10	16	25	27	40	44	45	40	43
91.055555555556	12/04/01	01:20:00	9999	11	19	26	29	47	49	50	45	41
91.0625	12/04/01	01:30:00	9	9	15	20	24	39	43	43	42	42
Day of Year	aa/mm/d	hh:mm:ss										
91.006944444444	12/04/01	00:10:00	223	2.8	223	3.4	223	3.8	221	4.6	222	4.2
91.013888888889	12/04/01	00:20:00	218	2.1	222	3.7	221	3.8	222	4.0	224	4.8
91.0208333333333	12/04/01	00:30:00	221	2.8	221	3.3	221	3.8	223	4.1	227	4.5
91.027777777778	12/04/01	00:40:00	223	2.5	224	3.3	223	4.1	223	4.1	223	4.8
91.034722222222	12/04/01	00:50:00	223	2.7	222	2.9	221	3.5	221	4.0	223	4.5

Tabela 1 – dados coletados pelo miniSODAR de 10m a 55m

60	65	70	75	80	85	90	95	100	105	110	115	120	125
5.69	5.96	6.11	6.52	6.82	7.02	7.2	7.38	7.45	7.62	7.57	7.56	7.69	7.68
5.87	5.99	6.05	6.39	6.39	6.72	6.79	7.1	7.27	7.41	7.66	7.84	7.83	7.81
5.39	5.51	5.72	6.08	6.17	6.5	6.86	6.93	7.15	7.37	7.16	7.15	7.56	7.68
4.7	5.09	5.46	5.82	6.05	6.24	7	6.99	7.23	7.38	7.44	7.51	7.61	7.39
5.43	5.68	5.72	6.04	6.12	6.44	6.5	6.9	6.96	7.08	7.31	7.33	7.42	7.44
6.32	6.61	6.85	7.2	7.29	7.43	7.76	7.96	8.08	8.08	8.07	8.35	8.34	8.1
5.5	5.91	6.02	6.53	6.68	7.04	7.28	7.51	7.52	7.74	7.8	7.88	8.32	8.26
5.69	6	6.11	6.75	7.24	7.32	7.47	7.96	8.21	8.44	8.36	8.5	8.86	8.9
6.62	6.75	6.94	7.35	7.51	7.87	7.86	7.83	8.35	8.42	8.9	9.07	9.15	9.34
60	65	70	75	80	85	90	95	100	105	110	115	120	125
48	49	49	50	49	49	47	48	48	47	50	48	49	5
46	1			46			45	46	46		48	48	4
36				41		40	41	41	42		44	45	4
34		37		37			39	40	39		41	41	4
42				42		44	42	43	43		42	43	4
44		44	42	43		44	43	43	42		43	43	4
41	42	43	43	45	45	44	47	46	46	45	46	46	4
44	45	43	44	48	48	49	47	45	44	46	47	47	4
41	39	39	42	44	45	42	44	47	46	46	46	45	4
		70	75	80	85	90	95	100	105	110	115	120	12
225	4.9												
225	4.5												
226	4.5												
224	4.5												
223	4.1												

Tabela 2 - dados coletados pelo miniSODAR de 60m a 125m

				140		145	150	155	160	165	170	175	180	185	190	195	200
7.09	7.44	_	7.79		8.02		8.06	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	
	8.01	- 1	7.75		8.08		99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99
	7.85		8.28		0.00		7.92	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99 99.99
	7.62		7.65		7.26	_	7.31	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99
	7.74		7.85		7.98		99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99
	8.33	- 1	8.54		8.52		8.45	8.9	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99
	8.86	_	8.69		8.73		8.59	8.1	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99
	8.92	_	9.08		8.77		8.87	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99
	9.44	- 1	9.64		9.01		99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99	99.99
130		135		140		145	150	155	160	165	170	175	180	185	190	195	
130		135		140		145	150	155	160	165	1/0	1/5	180	185	190	195	200
49		49		50		49	47	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999
48		47		46		50	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999
47		48		43		47	46	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999
43		41		42		42	39	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999
42		43		42		41	43	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999
44		43		43		43	44	43	9999	9999	9999	9999	9999	9999	9999	9999	9999
46		45		45		45	45	44	9999	9999	9999	9999	9999	9999	9999	9999	9999
47		48		47		46	46	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999
45		42		41		41	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999	9999
130	1	135		140		145	150	155	160	165	170	175	180	185	190	195	200
		+															

Tabela 3 e 4 - dados coletados pelo miniSODAR de 130m a 200m

91.0416666666667	12/04/01	01:00:00	224	2.7	223	3.1	218	3.5	221	4.2	224	4.5
91.0486111111111	12/04/01	01:10:00	223	2.5	224	3.2	226	3.5	229	5.5	220	4.8
91.055555555556	12/04/01	01:20:00	223	2.5	222	3.3	222	3.6	220	4.6	225	4.9
91.0625	12/04/01	01:30:00	226	2.4	223	2.8	222	3.9	222	4.0	225	5.1

Tabela 5 - dados coletados pela Torre Anemometrica em 6 níveis diferentes, estes dados foram coletados nos seguintes níveis:

Nível 1 - 6m

Nível 2 - 10m

Nível 3 - 16m

Nível 4 - 28m

Nível 5 - 43m

Nível 6 - 70m

Com análises dos dados em planilhas foi possível comparar e analisar os picos e as variações coletadas pelos dados. Alguns dos dados como "9999" e "99,99" são falhas na obtenção de dados pelos medidores.

Comentários Finais

Pode-se concluir que até 50m, a velocidade do vento medido pelo miniSODAR é praticamente constant, a partir dos 55m , sua velocidade começa a aumentar continuamente com a altura, com , até chegar a 160m. Os dados tambem mostram uma intensificação da velocidade do vento como por exemplo na tabela 6 (logo abaixo), vemos que no horário 00:10:00 a velocidade vária entre 2,80 e 4,40 ; apenas com ventos oscilando. Já na tabela 7 (idem, logo abaixo) vemos pouca oscilação e vemos uma aceleração da velocidade do vento.

		10 15	20		25	30	35	40		45	50
hh:mm:ss											
00:10:00	3.62	2.97	3.09	2.85	2.94		4	3.94	3.75	4.32	
00:20:00	3.4	3.27	3.35	3.12	3.32		3.76	3.79	3.97	4.42	
00:30:00	3.89	3.18	3.34	3.09	3.26		3.75	3.53	3.53	4.12	
00:40:00	3.29	3.4	3.27	2.81		3	3.61	3.43	3.39	3.88	
00:50:00	3.38	2.88	2.93	2.67	2.87		3.44	3.51	3.66	4.24	
01:00:00	3.84	3.31	3.45	3.32	3.43		4.26	4.41	4.5	5.1	
01:10:00	3.51	3.22	3.35	2.82	2.95		3.7	3.51	3.32	4.14	
01:20:00	99.99	3.32	3.35	2.84	2.92		3.66	3.69	3.52	4.01	
01:30:00	3.53	3.63	3.48	3.27	3.58		4.33	3.84	3.49	4.23	

Tabela 7

	60		65	70		75		80	85	9	ס	95		100	105	110	115		120	125
5.69		5.96	6.11		6.52	6	.82	7.02		7.2	7.38		7.45	7.62		7.57	7.56	7.69	7.68	
5.87		5.99	6.05		6.39	(3.39	6.72		6.79	7.1		7.27	7.41		7.66	7.84	7.83	7.81	
5.39		5.51	5.72		6.08	6	.17	6.5		6.86	6.93		7.15	7.37		7.16	7.15	7.56	7.68	
4.7		5.09	5.46		5.82	6	.05	6.24			6.99		7.23	7.38		7.44	7.51	7.61	7.39	
5.43		5.68	5.72		6.04	6	.12	6.44		6.5	6.9		6.96	7.08		7.31	7.33	7.42	7.44	
6.32		6.61	6.85		7.2	7	.29	7.43		7.76	7.96		8.08	8.08		8.07	8.35	8.34	8.1	
5.5		5.91	6.02		6.53	6	.68	7.04		7.28	7.51		7.52	7.74		7.8	7.88	8.32	8.26	
5.69			6 6.11		6.75	7	.24	7.32		7.47	7.96		8.21	8.44		8.36	8.5	8.86	8.9	
6.62		6.75	6.94		7.35	7	.51	7.87		7.86	7.83		8.35	8.42		8.9	9.07	9.15	9.34	

Tabela 8

Já a direção do vento tente a ter uma variação considerável entre 10m a 35m em todos os horários, com uma ligeira variação ao longo do tempo em relação a mesma altura na coluna de ar. Como podemos ver na tabela 8 há variações notáveis, como por exemplo 01:10:00 que varia de 8 graus a 40 graus.

	10	15	20	25	30	35
L L						
hh:mm:ss						
00:10:00	20	16	21	29	36	42
00:20:00	5	15	20	27	31	38
00:30:00	29	18	22	29	29	37
00:40:00	13	12	19	22	23	37
00:50:00	22	18	28	29	29	33
01:00:00	19	17	23	27	32	39
01:10:00	8	10	16	25	27	40
01:20:00	9999	11	19	26	29	47
01:30:00	9	9	15	20	24	39

Este trabalho iniciou-se em abril de 2015, com a leitura de textos sobre instrumentos e medições do vento no CLA. Como um exercício prático, foi feita a análise para 1 dia, em que desenvolveu-se um programa de computador para ler os dados e plota-los.