

Relatório Final

Título do projeto de pesquisa:	Desenvolvimento de Ligas de Titânio com Módulo de	
	Elasticidade Auto-ajustáveis	
Bolsista:	Silvana Xavier Gimenez	
Orientador(a):	Vinicius Andre Henriques Rodrigues	
Período a que se refere o relatório:	Abril de 2016 a Julho de 2016	

Resumo

As ligas beta de titânio são importantes para aplicações aeroespaciais por apresentarem uma combinação de elevada resistência, baixo módulo de elasticidade e baixa densidade. Entretanto, as ligas , por serem mais flexíveis, apresentam um efeito acentuado de recuperação elástica ("springback") que afeta os processos de conformação mecânica. Esse trabalho visa o desenvolvimento de uma nova classe de ligas beta de titânio que atenuam o efeito de recuperação elástica. O desenvolvimento da liga Ti-30Zr-20Nb processada por metalurgia do pó a partir de duas rotas utilizando titânio hidrogenado e titânio metálico, inclui etapas de compactação uniaxial e isostática a frio e sinterização em alto vácuo entre 800°C e 1400°C. As amostras sinterizadas foram caracterizadas por microscopia eletrônica de varredura (MEV), espectroscopia de energia dispersiva (EDS) e análises de densidade e dureza. Os resultados indicam a total dissolução dos elementos e a obtenção de uma microestrutura beta em altas temperaturas de sinterização.

1. Introdução

O titânio é um material que tem em sua estrutura uma combinação de propriedades físicas e resistência mecânica que o torna único dentre tantos metais [1]. Para certas aplicações faz-se necessário o uso de uma liga de baixo módulo de elasticidade, pois apresentam uma flexibilidade maior, o que está associado à utilização de determinados estabilizadores da fase como o nióbio e tântalo [2].

As ligas mais flexíveis são de conformação complexa devido ao efeito de retorno elástico. Dessa forma, atualmente, estão sendo desenvolvidas novas ligas com módulo de elasticidade auto-ajustáveis, em que um alto módulo de elasticidade pode ser obtido somente na parte deformada dos materiais, enquanto que o módulo da parte não-deformada permanece baixo. Isto é possível devido a uma transformação da fase induzida por deformação localizada no interior da parte deformada do material o que possibilita uma reduzida recuperação elástica nesse local [3-4].

A metalurgia do pó (M/P) é uma técnica empregada para produzir peças próximas ao formato final. As peças são produzidas por processos de compactação e sinterização, a partir do uso de pós, geralmente obtidos por moagem mecânica [5]. Esta técnica vem se tornando uma alternativa viável devido a seu baixo custo e fácil operação quando comparado a métodos tradicionais na indústria de metais, além de permitir a produção de peças com porosidade controlada [6].

Nesse trabalho foi estudada uma nova liga de titânio desenvolvida pela Divisão de Materiais (AMR), de composição Ti-30Zr-20Nb, que visa atenuar os efeitos de recuperação elástica.

2. Materiais e métodos

Nesse trabalho, a liga Ti-30Zr-20Nb foi produzida por duas rotas: Rota 1- usando pós hidrogenados; e Rota 2- usando pós metálicos.

2.1 Obtenção dos pós hidrogenados

O processo de hidrogenação-desidrogenação (HDH) é um método de produção de pós que parte da fragilização dos metais a partir da injeção de hidrogênio em metais que possuem a alta capacidade de absorção do gás. Assim, é muito utilizado em elementos como Titânio, Nióbio e Zircônio, componentes da liga trabalhada na Rota 1.

Para a obtenção de pós de titânio e zircônio foram utilizados finos de esponja e a hidrogenação foi realizada a 700 °C. O pó de nióbio foi obtido por esta mesma rota, porém com temperaturas de hidrogenação de 800 °C a partir de cavacos de usinagem. Após o

resfriamento ao forno, os materiais, já frágeis, foram posteriormente moídos por 2h em um cadinho de titânio, em vácuo mecânico 10^{-7} Torr, à temperatura ambiente.

2.2 Pós metálicos

Para a rota 2 foram utilizados pós metálicos de Ti, Zr e Nb fornecidos pela Alfa Aesar.

2.3 Processamento para obtenção de amostras da liga Ti-30Zr-20Nb

As amostras das rotas 1 e 2 foram obtidas por meio do mesmo ciclo de processamento descrito a seguir.

2.3.1- Mistura e compactação

Os pós de ambas as rotas foram misturados em um misturador rotativo na estequiometria da liga por 2h. A seguir, as amostras foram prensadas uniaxialmente a frio utilizando-se uma matriz de aço de 10 mm de diâmetro, com camisa flutuante. As amostras foram então encapsuladas, sob vácuo, em moldes flexíveis de látex e introduzidas no vaso de pressão cilíndrico de uma prensa isostática a frio e aplicada uma pressão de 350 bar por 30s.

2.3.2 Sinterização

As amostras foram sinterizadas em temperaturas variando de 800°C a 1400°C. A sinterização pode ser definida como um processo físico, termicamente ativado, que faz com que um conjunto de partículas de determinado material, inicialmente em contato mútuo, adquira resistência mecânica. Durante a sinterização, a porosidade da estrutura é fechada, uniformizando, assim, sua densidade [5].

A Tabela 1 apresenta os parâmetros empregados na fabricação da liga Ti-30Zr-20Nb.

Processo	Parâmetro	Dados	Observações
Compactação	Quantidade	10 peças de cada rota	corpos de prova
	Peso	5g	com lubrificante
Sinterização	Taxa de	20°C/min	constante
	aquecimento		
	Temperatura	800°C à 1400°C	Patamar de 1h
	Atmosfera	10 ⁻⁷ Torr,	Vácuo

Tabela 1: Paramêtros utilizados para a liga Ti-30Zr-20Nb

2.4 Caracterização das amostras sinterizadas

2.4.1 Caracterização microestrutural

Para a preparação das amostras, utilizou-se a seqüencia de lixas de 220, 400, 600 e 1200, em seguida, foram polidas com uma solução de 10% ácido oxálico e alumina.

Posteriormente, as amostram foram submetidas ao ataque químico com a solução de Kroll, parte fundamental para revelação da microestrutura presentes.

A caracterização microestrutural das amostras foi feita a partir de microscopia óptica, microscopia eletrônica de varredura (MEV) e espectroscopia de energia dispersiva (EDS).

2.5 Determinação de Microdureza

As amostras foram submetidas ao ensaio de dureza Vickers. Em cada amostra foram realizadas seis indentações, com 300gf cada durante 12 segundos.

2.6 Determinação de Densidade

O ensaio de densidade foi realizado utilizando o método de Arquimedes.

Primeiramente, obteve-se o peso das amostras secas a partir de uma balança analítica. Em seguida mediu-se as massas úmidas e imersas. A partir da Equação 1, obteve-se os valores de densidade.

$$\rho = \frac{\text{massa seca (Ms)}}{\text{massa úmida (Mu)} - \text{massa imersa (Mi)}} \times \rho H20$$
(Eq. 1)

Onde é a densidade medida em gramas por centímetros cúbicos, e H2O é a densidade da água medida de acordo com a temperatura ambiente

3. Resultados

3.1- Rota 1

3.1.1- Desenvolvimento Microestrutural

As imagens apresentadas na Figura 1 ilustram o desenvolvimento microestrutural da liga Ti-30Zr-20Nb a diferentes temperaturas de sinterização a partir da dissolução dos elementos de liga na matriz de titânio. A análise permite concluir que a microestrutura das amostras dependem da dissolução das partículas de nióbio.

À 800°C, observa-se que ouve uma boa homogeneização das partículas dos diversos elementos. Nesse temperatura há pouca dissolução dos elementos e podem ser destacadas as áreas mais escuras compostas por partículas de titânio e áreas mais claras que são partículas de nióbio. A dissolução das partículas de Zírcônio é muito rápida e de difícil identificação.

A 900°C, pode-se observar uma mudança na morfologia das partículas de nióbio, de angular para arredondada, indicando o início de sua dissolução. As partículas de Nb continuam a se dissolver e a homogeneizar-se com o titânio e percebe-se o início da formação da estrutura Widmanstätten, bifásica (+).

A 1000°C, todas as partículas de Zr foram dissolvidas. Basicamente não se observa mais regiões com áreas somente com titânio indicando que a dissolução das partículas de Nb é crescente e contribui fortemente na formação de áreas de fase .

A 1100°C, observa-se a microestrutura da liga tornando-se mais homogênea, com maior dissolução dos elementos da liga e demonstra já uma tendência à estabilização de areas de fase que são as regiões em cinza claro circundantes às regiões contendo núcleos de Nb.

A 1200°C, continua a evolução microestrutural e homogeneização de regiões de fase , observando-se ainda a presença de regiões ricas em nióbio, que correspondem, provavelmente, às partículas maiores.

A 1300°C, Observa-se a dissolução dos últimos núcleos contendo Nb que são representadas pelas regiões mais claras.

A 1400°C, a microestrutura está completamente homogênea por toda a extensão da amostra apresentando microestrutura basicamente compostas por grãos de fase beta demosntrando que todas partículas de Nb foram dissolvidas e a amostra se encontra em equilíbrio químico.

Figura 1: Micrografia das amostras da Rota 1 sinterizadas a diferentes temperaturas (MEV)

3.1.2- Análise por EDS

As análises químicas realizadas por espectrometria de energia dispersiva também destacam o papel dos elementos Nb e Zr no desenvolvimento microestrutural das amostras da liga Ti-30Zr-20Nb durante a sinterização.

A análise por EDS na amostra a 800°C (Figura 2) apresenta 4 variedades microestruturais: 1- regiões de titânio; 2- partículas de Nb em início de dissolução; 3- regiões de Zr em rápida dissolução; e 4- regiões Widmanstätten, bifásica (+) devido à dissolução de Nb próxima a particulas de titânio (Tabela 2).

Figura 2: Micrografia da liga Ti-30Zr-20Nb (Rota 1) sinterizada a 800°C.

Tabela 2- Composição química determinada por EDS de regiões da liga Ti-30Zr-20Nb sinterizada a 800°C (% peso)

Área	Ti	Zr	Nb
1	0,67		99,33
2	99.47		0,53
3	33,06	53,84	13,10
4	54.31	33.89	6,92

A 1400°C (Figura 3), observou-se a completa dissolução das partículas de nióbio e a hmogeneização microestrutural da liga composta basicamente de grãos de fase com a composição aproximada de 47, 04% de Ti, 29,54 de Zr e 23, 42 de Nb.

Figura 3- Micrografia da liga Ti-30Zr-20Nb (Rota 1) sinterizada a 1400°C

3.2- Rota 2

As imagens apresentadas na Figura 4 ilustram o comportamento microestrutural da liga Ti-30Zr-20Nb – Rota 2 a diferentes temperaturas de sinterização. A evolução microestrutural foi basicamente a mesma da rota 1 baseada na dissolução das partículas de nióbio. Inicilamente há a estabilização de regiões Widmanstätten, bifásica (+) e com o aumento da dissolução de Nb há a estabilização das regiões de fase . Como distinção observou-se que o pó de Nb estava mais fino e ficaram retidos como aglomerados nos interstícios das partículas de Ti.

As análises por EDS demonstraram o mesmo comportamento de dissolução das partículas de Nb e Zr na matriz de titânio com a estabilização final de grãos de fase .

Figura 4- Micrografia das amostras da Rota 2 sinterizadas a diferentes temperaturas (MEV).

3.3 – Ensaio de Densidade

Os ensaios de densidade revelaram um aumento linear dos valores com o aumento da temperatura de sinterização devido à ativação dos processos de transporte de massa a altas temperaturas (Figura 5). A rota 1 apresentou uma maior densificação devido à saída de hidrogênio durante a sinterização a vácuo que reforça a contração das amostras.

Figura 5- Curva de densificação da Rota 1 e 2 em função da temperatura

3.4 – Ensaio de Dureza de Vickers

Os valores de dureza também foram crescentes com o aumento da temperatura de sinterização principalmente em virtude da densificação do material e eliminação dos poros (Figura 6).

A rota 2 apresentou valores muito superiores aos esperados e este fato deve ser melhor estudados. Valores altos de dureza em ligas de titânio estão frequentemente relacionados a um teor de oxigênio elevado.

Figura 6: Curva de dureza da Rota 1 e 2 em função da temperatura.

4. Conclusões

1A obtenção da liga Ti-30Zr-20Nb por meio de M/P mostrou-se ser eficiente. Os parâmetros utilizados no processamento foram adequados. As partículas dos diversos metais utilizados apresentaram uma boa homogeneização durante a etapa de mistura. As amostras obtidas após sinterização apresentaram baixa porosidade, elevada densificação e microestrutura homogênea, sem a necessidade de procedimentos especiais.

2- Devido à completa dissolução dos elementos de liga na matriz de titânio, uma boa combinação de microestrutura, propriedades mecânicas e densificação pode ser alcançado. O estudo da evolução microestrutural indica que o processo de sinterização da liga é controlado pela dissolução das partículas de nióbio que atuam como agente nucleador da fase . A obtenção de uma microestrutura totalmente beta somente é obtida após a completa dissolução de todas as partículas de nióbio a 1400°C.

3- A rota 2 não se mostour viável em virtude da menor densificação e dos altos valores de dureza. Entretanto, essa rota deve ser melhor estudada para se identificar a origem de uma possível contaminação pór oxigênio.

4- A rota 1 mostrou-se ser a mais viável e a que apresentou os melhores resultados indicando que a utilização de pós hidrogenados pode proporcionar peças com um desenvolvimento microestrutural controlado e principalmente com um a maior densificação que é uma característica muito importante em componentes obtidos por metalurgia do pó.

Referências

[1] Donachie, M.J. Titanium a technical guide, ASM, 1988.

[2] Collings, E. W. The physical metallurgy of titanium alloys, American Society for Metals, 1983

[3] Zhao XL, Niinomi M, Nakai M, Miyamoto G, Furuhara T. Microstructures and mechanical properties of metastable Ti–30Zr–(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications. *Acta Biomaterialia*, 7: 3230–6, 2011.

[4] Zhao, X.F., Niinomi, M., Nakai, M., Hieda, J., Ishimoto, T., Nakano, T., Optimization of Cr content of metastable -type Ti–Cr alloys with changeable Young's modulus for spinal fixation application, *Acta Biomaterialia*, 8,2392–2400, 2012.

[5] German, R. M. Sintering, Theory and practice, John Wiley & Sons, 1996

[6] German, R. M. Powder metallurgy science, Metal Powder Industry Federation, 1990.